「真人上下分送分」转债分析框架的完善:一种相对视角出发的择券思路

2020-01-11 17:58:11作者:匿名

「真人上下分送分」转债分析框架的完善:一种相对视角出发的择券思路

真人上下分送分,作者:明明债券研究团队

《证券期货投资者适当性管理办法》于2017年7月1日起正式实施。通过微信、有道云等方式制作的本资料仅面向中信证券客户中的金融机构专业投资者,请勿对本资料进行任何形式的转发行为。若您并非中信证券客户中的金融机构专业投资者,为保证服务质量、控制投资风险,请勿使用本资料。

本资料难以设置访问权限,若给您造成不便,还请见谅!感谢您给予的理解和配合。若有任何疑问,敬请发送邮件至信箱kehu@citics.com。

事项

在《可转债基础研究系列之十九—转债分析框架总论:打造完整的工具箱》中,我们撰写了一篇总论将前面数篇基础研究系列报告中构建的指标与分析方法置入至一个相对完整的“1+3(3)+1”的分析框架中,力求自上而下对转债中短期行情以及长期趋势的判断提供理论基础。在此基础上,此篇报告我们将以转债与正股的相对性价比作为核心参考因素,在存量个券数量稳步上行的大背景下,试图构建一类新的兼具有效性以及时效性的指标工具,进一步完善我们的择券体系。

评论

转债分析框架的完善

在《可转债基础研究系列之十九—转债分析框架总论:打造完整的工具箱》(2018-7-6)搭建的分析框架中,我们从权益市场的alpha与beta出发,结合转债内生指标工具将其逐步推导至转债市场,试图更好地把握市场趋势。而在分析框架中的核心环节“3(3)”中,我们使用平均价格、股性估值以及债性估值这三类转债自身的特有指标构建了三因素分析框架,并在此基础上引入了包含溢价率曲线、离散度以及流动性的辅助工具箱。此环节的核心意义在于分析转债与股债大类资产间的相对性价比,寻找转债的相对优势与合适的介入时机。基础研究系列之十九中已经将基础的理论做了较为详尽的阐述,基本解决了从全局视角比对的框架问题,但所缺乏的细节是具体到个券层面如何进行比对。

在具体择券层面,《转债基础研究系列之十三—一种缩小目标券范围的筛选思路》(2017-12-29)中我们曾构建了转债市场的PEG模型,以正股的基本面及估值作为主要考量因素,试图找出具有充足上涨空间的转债标的。但PEG模型是从绝对收益的角度出发进行分析,将正股与转债的特性结合在一起得到的指标体系。若换一个角度出发,转债股债结合的特性使得其天然的短期弹性强于债券弱于股票,与此相对的波动范围则大于债券小于股票。因此倘若仅考虑绝对收益,可能会存在上涨空间相对有限,但波动较小具备相对性价比个券被剔除的情况。为了避免此类情况并进一步完善我们的择券体系,在本篇文章中我们将聚焦于转债与正股的相对性价比,着力构建一个合适的指标与体系解决上述缺陷,更为丰富的满足不同诉求的投资者。

寻找一个合适的比对指标

在个券层面比对转债与对应正股的相对性价比,首先需要探寻一个合适的指标。举例来说,若仅使用收益率作为参考指标,在转债多数标的转股溢价率为正值的大环境下,转股预期下转债最终收益必然低于其对应正股,反过来看极端情况下转债的损失也将低于正股,而与之相对的则是转债波动率往往小于其正股波动率。因而以求更全面的比对转债与正股间的相对性价比,应将收益与风险综合起来纳入考虑范围。简而言之,我们构建经过风险调整后的收益率水平指标来比对转债与对应正股的性价比。

用于衡量风险调整后收益水平的指标,市场上已经存在不少被广泛应用的选择,而其中最为主流的则包括了夏普比率、特雷诺比率、贝塔系数以及詹森指数。具体来看,夏普比率及特雷诺比率均测算了投资标的单位风险所获得的风险溢价,而贝塔系数及詹森指数则引入了大盘平均回报率,主要用于反映投资标的相较大盘的关联程度以及表现情况。而此次我们的核心目的在于比对转债与正股间的相对性价比,因此前两者更为适用。再进一步来看,夏普比率与特雷诺比率的主要差异体现在分母上,夏普比率的分母为标准差,反映整体风险;而特雷诺比率的分母为贝塔系数,反映系统风险。对于转债与正股而言,两者本身存在着一定的系统性差异,整体风险更为适用;与此同时,夏普比率的测算在假设条件上更为简单。综上所述,我们认为夏普比率在此情况下更具参考意义,在后续中我们将参考传统的夏普比率构建转债的相应指标。

构建正股夏普比率

传统夏普比率的计算公式为:

其中E(R_p )为投资组合的预期收益率,R_f为无风险利率,σ_p  为投资组合的标准差。夏普比率测算了投资组合承受的单位风险所能获得的回报,夏普比率越大,说明单位风险获得的收益越高,该投资组合也就越有效率。

传统的夏普比率通常针对一个投资组合进行计算,基于本文的目标我们将其迁移至单个标的进行计算,假设单一正股或转债即为一投资组合,则投资组合的标准差可认定为单一正股或者转债收益的标准差。下面我们分别讨论正股与转债夏普比率的计算细节。

对于转债正股而言,我们直接参考传统的夏普比率计算公式对正股的夏普比率进行测算。我们的主要假设包括:

1)假设一年共有242个交易日;

2)假设无风险利率(R_f)为一年期银行间固定利率国债到期收益率;

3)计算近90个交易日正股波动率并进行年化;

4)预期收益率使用WIND一致预期目标价相对基准日收盘价的涨幅。需要指出的是WIND一致预期目标价给出的是近180天所有机构给出的目标价的算数平均,考虑到单一正股潜在上涨收益不可能为复利模式,因此我们并未将上述预期涨幅进行年化,而是直接将未来180天目标价的预期涨幅作为预期年化收益率,更为符合常理。

计算时使用当日数据。具体的计算过程如下:

构建转债夏普比率

对于转债而言,其自身内嵌期权的属性以及诸多条款因素均使得传统夏普比率的计算公式对其并不适用,因而我们结合上述因素,在作出基本假设以及公式调整的基础上对转债的夏普比率进行测算。我们的主要假设包括:

(1)假设所有转债最终均会触发提前赎回条款或全部转股,即转股溢价率终会压缩至零值水平,因此在计算转债预期收益率时我们将扣除个券的转股溢价率θ_i,仅考虑正股走势所带来的持有转债的最低收益。

(2)假设转债内嵌期权价格=转债价格-纯债价值。理论上,转债价格=纯债价值+期权价值。其中纯债价值等于转债各期利息收入、到期转债面值以及期末回售补偿价值的折现价值,折现率通常以相应评级对应的公司债收益率曲线为基准,纯债价值主要受转债的内生条款以及市场利率影响,较容易测算,因此在实际计算上,我们使用转债当日收盘价减去纯债价值计算对应的期权价值。

(3)假设转债内嵌期权的定价满足Black-Scholes模型。

其中X_i表示转股价,S_i表示正股价,T_i代表剩余期限,R_f表示无风险利率。在Black-Scholes模型中,转债内嵌期权的价格是一个关于正股价格、剩余期限、波动率、无风险利率的四元函数。因而我们将当日个券对应的期权价格带入公式,通过二分法反复迭代得到近似当日的隐含波动率σ_i_implied。

在后续计算中,我们使用转债个券的隐含波动率替代历史波动率,其背后核心原因来自于转债内生的条款因素。具体来说,转债价格与正股价格的核心差异在于转债价格还受到其内生各项条款所影响,在不同价格下转债标的所面临的条款制约也会随之变化。而转债的历史价格仅考虑了该标的在过往环境下所面临的条款制约情况,并未反映当前的条款制约情况。与之相对,Black-Scholes模型使用的是期权的现值,不仅包括了过去情况也反映了当下情况,更为可取。

(4)假设无风险利率(R_f)为一年期银行间固定利率国债到期收益率。

在此基础上,转债调整的夏普比率计算方法为:

在计算过程中,我们发现在两种情况下,个券的隐含波动率会出现约等于零的情况:一是当转债价格跌破纯债价值时,此时期权的理论价格为负数,并不适用于定价公式;二是当转股溢价率处于绝对低位或是负值时,多数情况下转债正股价格距离转股价格较远,即平价处于高位,直接导致理论期权价格远远高于实际期权价格,此时即使波动率无限趋近于零值得到的期权价格也小于实际的期权价格,因此隐含波动率的计算无法得到合理的解。

上述两种情况均属于实际定价与模型定价所存在的系统性差异,较难通过调整计算方法将其完全消除。但换一个角度出发,上述两类情形也并非处于我们的核心讨论目标区间之内。

对于纯债溢价率为负值的转债标的而言,其往往受到信用风险问题的冲击,贴现率远低于隐含收益率水平导致转债价格跌破纯债价值,此类标的期权价值处于深度虚值区间之内,而我们的目标是从收益率的角度比对转债与正股相对性价比,期权价值为深度虚值以及信用风险较大的标的并非主要目标。

对于转股溢价率较低的转债标的而言,其期权价值处于深度实值区间,即使隐含波动率无限趋紧零值,由Black-Scholes公式计算得到的期权价值也低于实际值,此时的隐含波动率存在偏差,以此计算得到的夏普比率也误差较大。但是此类情况也并非我们的核心目标区间,跳出夏普比率的框架,此类转债标的通常绝对价格较高而溢价率也多在零值附近或者为负值,因此其潜在收益水平不亚于正股,与此同时债底的保护也使得此类标的在极端情况下风险小于正股,性价比理应高于正股,并不需要额外计算具体的指标。简单来说,此类转债的转股溢价率及绝对价格已经决定了其性价比高于正股,并不属于夏普比率模型的核心目标。

在实际计算层面,隐含波动率的困难实质来自于Black-Scholes公式对于深度虚值或实值期权价值的推算上存在天然的难度与偏差,但对于转债标的而言,上述两类情况其实并不需要夏普比率指标便能较为直观地判断其与正股的相对性价比,因此对于我们所构建的模型影响有限。

考虑到这两类情况,为保证后续计算的准确度,我们将前述所计算的隐含波动率再次带入Black-Scholes模型,并测算结果与实际转债价格的误差。在后续计算中,我们仅参考理论价格和实际价格误差在1%以内的数据。

最终比对指标:Diff_Sharpe Ratio

根据前述公式可以进一步求得正股夏普比率以及转债夏普比率两者的差,以便更为直观的观察相对性价比,简单来说夏普比率越高则表明对应标的具有更胜一筹的相对性价比。

值得注意的是并非所有正股都有WIND一致预测目标价,我们仅计算有相应数据的标的。虽然无法保证计算结果的完整性,但对于行业研究员覆盖较少的正股标的,我们对其本身保持一丝谨慎的态度,因而此类情况对模型的有效性影响有限。与此同时,我们也剔除前述所分析理论价格与实际价格偏差超过1%的数据。

以8月28日计算结果为例,我们进一步对计算结果进行分析。截止当日,转债市场共有88只存量标的;其中60只标的满足要求可得出Diff_Sharpe Ratio指标,6只标的由于期权实际价格为负值无法计算隐含波动率,2只标的由于转股溢价率处于绝对地位或负值无法计算隐含波动率,22只标的由于没有一致预测价格无法计算预期收益率(包含1只期权价值为负值标的,1只转股溢价率为负值标的)。可以看到,多数个券无法测算指标的原因在于正股尚未有分析师覆盖,而行业或细分领域内相对龙头标的较少也是转债市场一直客观存在的问题,暂时无法简单的通过计算方式进行调整。

在60只可以求得Diff_Sharpe Ratio指标的标的中,共有17只标的结果为正值,占当期存量标的的19%左右,已经达到了初步筛选的目标,具体的标的筛选我们将在后续详细讨论。

Diff_Sharpe Ratio指标的参考意义

Diff_Sharpe Ratio指标的核心意义在于判断转债相较正股的相对性价比,因此我们在计算过程中仅考虑了正股走势所带来的转债收益。简单来说,当指标为正值时,转债的每单位风险赚取的超额收益高于正股,性价比较高;当指标为负值时,转债的每单位风险赚取的超额收益低于正股,性价比较弱。

从公式上看,Diff_Sharpe Ratio主要受三方面影响:

一是预期涨幅。预期涨幅越高Diff_Sharpe Ratio越大,在预期涨幅空间巨大的特殊情况下转股溢价率对结果的影响将会明显的边际削弱;

二是转股溢价率。当转股溢价率越低时,转债的夏普比率越大,Diff_Sharpe Ratio指标为正值的概率越高;

三是转债的隐含波动率与正股历史波动率的大小关系。当前者小于后者时,转债的夏普比率越大,相较正股的性价比越高。

在把握了影响计算结果的核心因素的基础上,我们再次回到存量标的最终结果,试图找出不同标的间的共同点。不难发现指标为正值的转债标的可以简单分为三类,分别对应至上述影响因素:第一类是预期涨幅偏高的个券,例如国贸、迪龙等;第二类是转股溢价率偏低的个券,例如崇达、安井等;第三类则是转债隐含波动率显著小于正股历史波动率的个券,例如星源、康泰等。

进一步细探个券的筛选,从基本逻辑出发,Diff_Sharpe Ratio的正负方向直接反映了转债与正股之间性价比的对比,因而我们将筛选阈值设为0,重点关注指标为正值的转债标的。另一方面,受制于实际价格和理论价格所存在的系统性差异,对个券而言单日数据可能会存在不满足阈值的情况,但此时并不意味着该标的不具备性价比。仔细观察个券层面的计算结果也能发现,在转债价格波动较大时,个券偶尔会出现期权价值为负值或转股溢价率被快速压缩的特殊情况,但此类情况通常持续时间较短,随着价格波动的缩小Diff_Sharpe Ratio也会逐渐回归至合理水平。为了尽量削弱此类情况给择券体系带来的干扰,我们将参考范围延伸至最近十个交易日,统计这一时间段内标的Diff_Sharpe Ratio指标为正值的频率。

在最终的择券体系中,我们将当日Diff_Sharp Ratio的阈值设为0%,将最近十个工作日满足Diff_Sharpe Ratio指标为正值的频率的阈值设为5;在此筛选条件上我们重点关注位于矩形阴影内的相关转债标的。依旧使用8月28日的数据作为参考,共有13只标的位于阴影区间内。

值得一提的是,对于上市时间少于十个工作日的新券而言,我们参考前述阈值的设定,若标的指标为正值频率在其上市区间占比不小于一半,既满足了筛选条件。

转债择券体系的完善

在第一部分中我们详细阐述了此篇报告的核心目标,即进一步完善我们的分析框架,构建一个从风险平衡后收益出发的指标,试图与PEG模型相结合完成一个较为全面的择券体系。在完成夏普比率模型的搭建以及阈值的设定后,我们以两种模型的计算结果为基础,详细探讨转债的择券体系,为了两者可比起见我们均不考虑银行转债。

从结果来看,在剔除银行转债后PEG模型筛选标的数量略多于夏普比率模型,但两者均较为有效的完成了初步择券需求。具体到个券层面,泰晶、康泰、艾华、安井、崇达、国贸、星源、高能、新凤以及博世十只转债同时被两个模型选中,就个券性质来看,除却国贸外其余标的均为偏高的盈利预测匹配了较低的转股溢价率,不管是转债还是正股都具备相对充足的潜在上涨空间,而国贸虽然转股溢价率偏高但预期涨幅处于绝对高位,一定程度弥补了短期弹性的不足。与此同时,三一、景旺此类转股溢价率为负值或绝对低位的个券受制于理论定价公式被夏普比率模型略过,但PEG模型已经给予了充分的覆盖;另一方面,蓝思此类正股成长性相对较弱的个券被PEG模型略过,但其转债波动率显著小于正股,相对收益具备性价比被夏普比率模型选中。

综合来看,夏普比率模型可以看做是PEG模型的一类良好补充。PEG模型单纯从收益率的角度出发,目标是在估值相匹配的前提下寻找潜在涨幅空间较大的转债标的,并未将风险作为一个主要指标进行考察。而夏普比率模型则将绝对收益率与风险相结合进行综合考量,若PEG模型是从绝对化角度出发,夏普比率模型则是从相对化的角度出发的择券模型。除此之外,夏普比率模型能够将银行转债纳入考虑这也是PEG模型所不擅长的部分。

从背后逻辑来看,夏普比率模型真正的目标区间以及其对于PEG模型的补充实质上来自于绝对价格相对偏低的这一类标的。在不存在计算偏误的前提下,转债自身隐含的较低风险对超额进行补偿,从而寻找一类平衡。换而言之,正向来看转债内嵌看涨期权的存在使得转债价格往往高于转股价值,即转股溢价率为正值,削弱了绝对收益率;反向来看受益于转债各类条款限制其蕴含风险小于正股,因此经过风险调整后的潜在收益水平或高于对应正股。我们所构建的夏普比率模型的核心目的在于寻找潜在上涨幅度有限但风险相对较小的一类标的,此类标的往往绝对收益较低容易被PEG模型忽略,但夏普比率模型可以帮助我们筛选出此类标的。对于投资者而言,在价格与溢价率的平衡中,夏普比率模型给予了一个量化的指标,特别当意在抄底的时候,回答到底转债与正股谁更具有投资价值这一类问题。

前述我们也详细讨论了当期权价值位于深度实值区域时,受期权理论定价模型限制,无法测算对应个券的夏普比率,但对这一部分高价标的PEG模型已经进行了良好的覆盖,无需重复计算。因此落实至具体操作层面,应将PEG模型与夏普比率模型相结合进行判断:PEG模型意在寻找具备潜在绝对收益的转债标的,夏普比率模型意在寻找比其正股具备相对收益的转债标的。

指标的缺陷与改进

前述我们详细介绍了夏普比率模型的假设、测算方式以及如何将其与PEG模型相结合从而构建一个较为全面的择券体系。但指标难免存在缺陷,在此部分我们将从传统夏普比率的基本假设出发,结合转债市场自身特性以及计算层面的细节,深度剖析模型的不足之处并给出改进方法。

非线性关系的干扰

传统夏普比率的主要假设包括了:无风险利率为常数,且借款与贷款使用同样的无风险利率;不同投资组合间并不存在线性关系,且资产收益率符合正态分布或二次偏好和投资者具有一个效用函数;标准差可以充分反映资产风险;组合风险与收益满足线性关系等等。

通常情况下我们从一个较长的年化角度来分析夏普比率的高低,但若将参考的时间维度缩短,由于变量间线性关系的变化,在不同条件下我们得到的夏普比率与长期视角的夏普比率将存在一定差异。

Diff_Sharpe Ratio指标主要包括了三大关键变量:预期涨跌幅、转股溢价率以及历史波动率和隐含波动率的大小关系。假定公式的分母都是外生,则分子方面预期收益率与转股溢价率的变化关系是我们关注的焦点。而预期收益率与转债平价成一阶线型关系,因此实质上是分析转债平价与转股溢价率之间的变化关系,他们是否成线性关系或是非线性关系。从指标的定义出发:

可以看到,平价与正股股价呈正向关系,当正股股价上涨时,转债平价也会随之上涨;而在平价相等的情况下,低价标的的转股溢价率低于高价标的,即平价与转股溢价率呈反向变动关系。但转股溢价率与平价间的关系存在转债价格这一核心变量,为了不额外增加更多假设,我们不使用定价模型对转债价格进行外生表达。因此,在此条件下转股溢价率与平价间并不存在理论计算公式。

取而代之,我们直接分析转股溢价率与平价的实际历史数据,参考标的范围为2018年1月2日前所有上市转债标的,参考时间范围为2018年1月2日至今。将横轴设为平价,纵轴设为转股溢价率,我们试图通过散点图的形态把握两者的潜在关系。可以看到两者关系呈向下凹型,即一阶导数为负数,二阶导数为正数。从导数的背后含义来看,一阶导数为负数代表函数斜率为负,在转债价格相等的情况下,平价越高,转股溢价率越低;二阶导数为正数代表函数斜率呈单调递增,随着平价的升高,转股溢价率的变化频率也在加快。从背后逻辑来看,对于低平价标的而言,其转股溢价率处于高位,弹性不足,因而不能充分享受正股股价的抬升;对于高平价标的而言,其转股溢价率处于低位,充足的弹性使得正股股价抬升时溢价率可以较为快速的压缩。

前述我们阐述了转股溢价率的压缩过程是非线性的,对于同一标的而言,其转股溢价率压缩的速度同时取决于正股股价的变动以及自身平价的绝对水平,这与传统夏普比率的主要假设有所冲突,在后续计算中可能会导致高估或低估指标的情况。

在此背景下,我们再次回到Diff_Sharpe Ratio指标的计算上,指标使用了日频率的数据,并在原始数据的基础上计算了所有存量标的当日的夏普比率,而在构建择券体系时我们将时间范围拉长至近十个工作日,以便最大程度削弱单日夏普比率受其他因素影响所带来的偏差。在此部分我们将时间范围进一步拉长,从时间区间的角度来看指标的不足。

© Copyright 2018-2019 hakimerek.com 申博网上赌场 Inc. All Rights Reserved.